Biophotonic Detection of Cervical Dysplasia: *The Transition from Clinical Trials to Real World Use*

Leo B. Twiggs MD
Professor Emeritus
University of Miami
Miller School of Medicine
Miami Florida USA
Acknowledgements and Disclaimer

US and Canadian Clinical Trials partially supported by US National Cancer Institute

Presenter and Principal Investigators do not have a financial interest in this project
Presentation Outline

• Brief history of biophotonics (spectroscopy) for cancer detection
• Clinical trial history and study results
• Current evaluations of commercial systems
• Conclusions
Brief History of Biophotonics

• 1990’s – Mostly academic research projects
 – City University of New York, MIT, University of Texas, British Columbia

• 2000’s – Commercialization of specific applications for:
 – Lung cancer
 – Colorectal cancer
 – Cervical cancer

• Most of these companies did not survive the economic recession of 2007-2009
Biophotonics and Cervical Dysplasia

• Initial application was to assist colposcopists in identifying lesions to biopsy (e.g., Medispectra (defunct) and Dysis)
 – Mostly due to cost and complexity of these systems
• Some companies chose to develop lower cost systems
 – Polartechnics
 – Guided Therapeutics
• Technology advances resulting in lower cost and easy to use systems lend themselves to lower cost triage use
Cancer Markers Identified by Spectroscopy

- **Biochemistry: Fluorescence 300-500 nm excitation**
 - NADH, FAD, Tryptophan
 - Collagen, Elastin
 - Porphyrin

- **Morphology: Reflectance 350-900 nm**
 - Increase in Nuclear/Cytoplasmic ratio
 - Hyperchromasias
 - Loss of cellular differentiation
 - Angiogenesis
Clinical Rationale

Pre-colposcopy triage techniques need high negative predictive value and specificity

• **ALTS** Trial showed that current triage of colposcopy after referral for ASC-US/HPV+ and LSIL patients would still miss between 30% to 40% of *CIN3 disease*

• **ALTS** Trial-Only about 5% of ASCUS Pap tests and 10% of LSIL Pap tests will actually detect CIN3 disease
Precursors to Invasive Cervical Cancer

Spectroscopy light penetrates below surface layer

Degree of Progression

<table>
<thead>
<tr>
<th>Normal</th>
<th>Low Grade SIL</th>
<th>High Grade SIL</th>
<th>Invasive Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Atypia</td>
<td>CIN 1</td>
<td>CIN 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Potential Solution: Better Technology

Light In –
Multiple wavelengths used to penetrate different tissue depths

1. **Fluorescence Spectra** -
 Reveal metabolic changes associated with neoplasia

2. **Reflectance Spectra** –
 Reveal morphological changes associated with neoplasia
Spectral Output of Cervical Tissue

Subject: 03-CC-H2-073-RC, reflectance spectra

Squamous Normal (SN) = Blue
Squamocolumnar junction (TZ) = Green
High Grade Dysplasia (HG) = Red
Clinical Rationale For Better Triage

Countries with established screening programs, e.g., US, Canada and Western Europe, have seen dramatic reductions in mortality due to cervical cancer.

However...

- Significant disease is not detected (false negatives)
- Many women without disease are referred to expensive and invasive procedures (false positives)
- HPV testing increases detection but also results in more false positives
US Pivotal Study Group

• 1607 total enrolled
• 195 excluded (mostly training cases or women with discordant or insufficient histopathology)
• 1447 analyzed for sensitivity and specificity
• 804 subjects with two year follow up
• Study published in Gynecologic Oncology, April 2013
Multimodal Spectroscopy as a Triage Test For Women at Risk For Cervical Neoplasia: Results of a 1,607 Subject Pivotal Trial

Funding in part by The National Cancer Institute
The Georgia Research Alliance

Authors:

- Leo Twiggs, Nahida Chakhtoura
- Claudia Werner, William Griffith
- Lisa Flowers
- Manocher Lashgari
- Daron Ferris
- Mark Winter
- Daniel Sternfeld
- Alexander Burnett
- Edward Wilkinson
- Stephen Raab

Institutions:

- University of Miami Women’s Hospital Center
- University of Texas Southwestern Medical Center
- Emory University School of Medicine
- University of Connecticut – St. Francis Hospital
- Medical College of Georgia
- Orange Coast Women’s Medical Group
- Saddleback Women’s Medical Group
- University of Arkansas
- University of Florida
- University of Colorado
US Pivotal Study Design

• Each subject served as own control
• Referral Pap/HPV or other risk factor to qualify for study
• Day of study, each subject had endocervical samples taken for Pap and HPV, followed by colposcopy and biopsy
• Histology QA procedure used to reach diagnosis for each subject
• Follow up data (two year) collected if available
• 804 returned for follow up, 243 had biopsies
Subject Had Referral Pap and was Scheduled for Colposcopy

Dysplasia Pap
- ASC-H
- LSIL
- HSIL

ASC-US Pap
- Repeat ASC-US
- HPV Positive
- W/Risk Factors

Other Factors
- Previous CIN
- Recurrent Changes
- Other Risk Factors

Study Procedure
1) Cervical Spectroscopy
2) Sample taken for Pap and HPV
3) Colposcopy
4) Biopsy (if indicated)
US Patient Demographics

<table>
<thead>
<tr>
<th>Age</th>
<th>Non-Hispanic</th>
<th>Hispanic</th>
<th>Total Enrolled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>American Indian</td>
<td>Asian Pacific Islander</td>
<td>African American</td>
</tr>
<tr>
<td>16-20</td>
<td>1</td>
<td>2</td>
<td>182</td>
</tr>
<tr>
<td>21-30</td>
<td>2</td>
<td>13</td>
<td>383</td>
</tr>
<tr>
<td>31-over</td>
<td>0</td>
<td>5</td>
<td>303</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Definitions

• **Final histology**
 – Pathology QA review involved blinded review by two independent expert pathologists
 – Up to two year histopathology follow-up after study

• **Standard of Care Includes:** Pap cytology, HPV testing and colposcopic impression

• **Sensitivity** - Ability of test to correctly identify patients with disease (CIN2+)

• **Specificity** - Reduction in referral rate to colposcopy and biopsy procedures

• **Negative Predictive Value (NPV)** - Level of confidence that a patient is free from disease (CIN3+)
Study Results

<table>
<thead>
<tr>
<th>Modality</th>
<th>% Sensitivity CIN2+ (n = 276)</th>
<th>% Specificity CIN1 (n = 570)</th>
<th>% Specificity Normal (601)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard of Care for referral*</td>
<td>76**</td>
<td>N/A (all referred to biopsy)</td>
<td>N/A (all referred to biopsy)</td>
</tr>
<tr>
<td>LuViva®</td>
<td>91</td>
<td>30</td>
<td>39</td>
</tr>
</tbody>
</table>

* Includes Pap cytology, HPV and colposcopy impression

** As determined by up to two year follow up
Rationale as Rule In Test to Find Cervical Cancer Earlier

<table>
<thead>
<tr>
<th>Modality</th>
<th>Sensitivity (95% CI)</th>
<th>Specificity (95% CI)</th>
<th>Sensitivity P value vs. LuViva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pap Cytology</td>
<td>72.2% (65.9,78.5)</td>
<td>50.4% (46.3,54.6)</td>
<td>0.0016</td>
</tr>
<tr>
<td>Colposcopy*</td>
<td>21.1% (15.4,26.9)</td>
<td>97.5% (96.2,98.8)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Standard of Care**</td>
<td>74.2% (68.1,80.4)</td>
<td>0%</td>
<td>0.0018</td>
</tr>
<tr>
<td>LuViva</td>
<td>87.1% (82.4,91.8)</td>
<td>35.5% (32.7,38.3)</td>
<td>NA</td>
</tr>
</tbody>
</table>

* Calculated at High Grade/Low Grade threshold per FDA recommendation
** Consists of referral Pap cytology, HPV, colposcopy and ECC
LuViva Triage Test: Reduction of Unnecessary Colposcopy and Biopsy

- Using the results of LuViva
 - **Normals** - 222/570 (39%) would not need further evaluation
 - **CIN1** - 182/601 (30%) would not need further evaluation
- Significant cost savings
- Reduced anxiety and complications from overtreatment
US Study Conclusions

LuViva detected 91% of CIN2+ compared with 76% sensitivity for the current standard of care consisting of Pap, HPV and colposcopically directed biopsy

- Data support use of LuViva to find cervical dysplasia earlier than standard of care

LuViva would have reduced the number of false positives by 39% for women with normal histology and by 30% for women with low grade dysplasia (CIN1 histology) with 99% confidence (NPV)

- Data support use of LuViva to safely eliminate a significant number of unnecessary colposcopies and biopsies
LuViva® Advanced Cervical Scan
LuViva® Advanced Cervical Scan

• Measures fluorescence and reflectance spectra in one minute
• Easy to operate with immediate result
• Single patient use disposable
• Built in video colposcope
• LuViva developed by Guided Therapeutics, Inc. Norcross, Georgia, USA
LuViva® Cervical Guide

- Single-use patient interface
- Attaches to Handheld Unit
- Calibrates spectrograph prior to each test
- Maintains optical distance and blocks ambient light
- RFID Chip assures patient protection by prohibiting use on next patient
Scan Procedure

- Prep subject for gynecological exam
- Remove excessive blood or mucus, nothing is applied
- Activate calibration and internal quality checks (1 minute)
- Insert Cervical Guide (CG) until contact is made with cervix and it is in focus with os centered (15-20 seconds)
- Initiate scan
 - Capture video image (<1 second)
 - Collect spectral data (1 minute)
 - Capture second video image to make sure os is still visible and centered (<1 second)
- Withdraw CG and dispose
- Scan complete and results presented immediately
LOW RESULT MEANS:
- 99% Confidence (NPV) patient does **not** have CIN3 or cancer
- 40% without dysplasia or cancer
- Patient return to normal screening

MODERATE RESULT MEANS:
- Moderate Risk of CIN1 or CIN2
- Doctor should consider colposcopy or close follow up based on history

HIGH RESULT MEANS:
- High likelihood of CIN2, CIN3 or cancer
- Doctor should schedule colposcopy and biopsy
For triage, LuViva is intended for use after abnormal cytology and/or positive HPV findings and/or other risk factors to triage women aged 16+ for additional evaluation prior to colposcopy and biopsy.
Results of Commercial Evaluations

<table>
<thead>
<tr>
<th>Study</th>
<th>Sensitivity</th>
<th>Specificity**</th>
<th>Number Tested</th>
<th>Researchers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFCPC* London, UK 2014</td>
<td>100%</td>
<td>44%</td>
<td>55</td>
<td>Bentley and Zane</td>
</tr>
<tr>
<td>Nigerian Ministry of Health - 2014</td>
<td>100%</td>
<td>33%</td>
<td>100</td>
<td>Adewole et al</td>
</tr>
<tr>
<td>Other International Evaluations (n = 3)</td>
<td>91%</td>
<td>46%</td>
<td>132</td>
<td>Various</td>
</tr>
</tbody>
</table>

* International Federation of Cervical Pathology and Colposcopy
** Normal Histopathology
Results of Commercial Evaluations

Conclusion:
Results of commercial evaluations are consistent with US pivotal study results

• High sensitivity (>90%)
• 30% to 50% of unnecessary colposcopies and biopsies avoided
• LuViva is accepted by physicians and their patients
Cervical Spectroscopy Conclusions

• Improves detection of high-grade dysplasia
• Eliminates unnecessary colposcopy & biopsy
• The test is relatively simple
 o Less discomfort
 o Well accepted by patients
• Provides immediate and more accurate results
• May reduce cost to patients and healthcare system
Thank You
Areas of Focus Learned from Commercial Evaluations

• The following rules will help avoid false positive and false negative results
• Do make sure the os can be clearly seen and is centered in both the pre- and post-spectroscopy video images
• Do make sure the both the pre- and post-spectroscopy images are in focus
• Do make sure the cervix is free of blood and mucus; check for and remove mucus plugs in the os
• Do not test contra-indicated women
 • Women with recent biopsies or LEEP procedures (wait 3-6 months)
 • Women with obvious infections
 • Women with obvious large lesions
 • Women with abnormal cervical variants
 • Chemo or radiation therapy for one year
• Do not add foreign substances to cervix, for example: Acetic acid, Lugol’s stain or lubricants
Technology Advancement

• Advances in the electro-optics, illumination sources and sensors
• Efficiencies in performance and cost of multimodal hyperspectroscopy (MHS)
• *Development of clinically relevant and convenient devices for the detection of cervical neoplasia*
Pivotal Trial Study Accrual Targets

<table>
<thead>
<tr>
<th>Estimated Prevalence of CIN 2+ (%)</th>
<th>Number of CIN2+ Cases Required</th>
<th>Number of Benign Cases Required</th>
<th>Total Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0</td>
<td>165 - 213</td>
<td>414 - 1031</td>
<td>1600-1650</td>
</tr>
</tbody>
</table>

- Enrollment from June 2004 to September 2008 at seven diverse clinical sites
- Follow up data integration starting June 2009
2079 (Total number of subjects enrolled) – 70 withdrawn

2009
“Spectroscopic Evaluation of Cervical Neoplasia”
2004 - 2008

418 enrolled – 16 withdrawn
402
Beta Interim and Threshold (BIT) arm

Beta Device 2 May 2006 – 25 Sep 2007
(Included Equivalence Testing Sep 2006 – Mar 2007)

1661 enrolled – 54 withdrawn
1607
Primary Efficacy and Performance (PEP) arm

8 June 2004 – 2 April 2007
(Pathology embargo until February 2009)
(Included Repeatability Testing Feb 2008 – Sept 2008)

<table>
<thead>
<tr>
<th>Subject Accountability Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training/Hardware/Software de-bugging</td>
</tr>
<tr>
<td>No or insufficient Histology (follow-up pending)</td>
</tr>
<tr>
<td>Histopathology Discordance</td>
</tr>
<tr>
<td>Device did not produce spectra</td>
</tr>
<tr>
<td>> ¼ cervix covered w/blood or mucus</td>
</tr>
<tr>
<td>USED FOR THRESHOLD VALIDATION</td>
</tr>
</tbody>
</table>

Alpha and Repeatability Training	54
Referral Pap Test Result Unavailable	1
No or insufficient Histology (Follow up Pending)	31
Histology Discordance	37
Device did not produce spectra	24
User Error	17
> ¼ cervix covered w/blood or mucus	36
USED FOR EFFICACY ANALYSIS	**1407**
Up to Two Year Follow Up Results

<table>
<thead>
<tr>
<th>Clinical Site</th>
<th>Enrolled</th>
<th>Follow up Data Not Yet Made Available</th>
<th>Lost to Follow Up</th>
<th>Follow up Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Texas Southwest</td>
<td>234</td>
<td>64</td>
<td>125</td>
<td>45</td>
</tr>
<tr>
<td>Emory University/Grady Hospital</td>
<td>348</td>
<td>48</td>
<td>81</td>
<td>219</td>
</tr>
<tr>
<td>University of Miami</td>
<td>313</td>
<td>0</td>
<td>116</td>
<td>197</td>
</tr>
<tr>
<td>University of Connecticut</td>
<td>394</td>
<td>0</td>
<td>164</td>
<td>230</td>
</tr>
<tr>
<td>Saint Francis Hospital</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Arkansas</td>
<td>48</td>
<td>48</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Medical College of Georgia</td>
<td>130</td>
<td>126</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Orange County California</td>
<td>140</td>
<td>11</td>
<td>20</td>
<td>109</td>
</tr>
<tr>
<td>Total</td>
<td>1,607</td>
<td>297</td>
<td>509</td>
<td>801</td>
</tr>
</tbody>
</table>
Clinical Rationale
Cervical Cancer Screening

Current screening and triage methods cause:

- **Delays** in diagnosing significant disease
- **Excessive** false positive rate
- **Expensive** billions of dollars of unnecessary cost
Patient Referral and Histopathology Results

Cases with no or indeterminate histopathology excluded (n=74)

<table>
<thead>
<tr>
<th>Reason for Referral</th>
<th>Normal</th>
<th>CIN 1</th>
<th>CIN 2+</th>
<th>TOTAL</th>
<th>Prevalence CIN 1 (%)</th>
<th>Prevalence CIN 2+ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative Pap</td>
<td>23</td>
<td>12</td>
<td>2</td>
<td>37</td>
<td>32.4</td>
<td>5.5</td>
</tr>
<tr>
<td>ASC/HPV+**</td>
<td>325</td>
<td>272</td>
<td>71</td>
<td>668</td>
<td>40.7</td>
<td>10.6</td>
</tr>
<tr>
<td>LSIL</td>
<td>245</td>
<td>330</td>
<td>134</td>
<td>709</td>
<td>46.5</td>
<td>18.9</td>
</tr>
<tr>
<td>HSIL</td>
<td>8</td>
<td>26</td>
<td>85</td>
<td>119</td>
<td>21.8</td>
<td>71.4</td>
</tr>
<tr>
<td>Total</td>
<td>601</td>
<td>640</td>
<td>292</td>
<td>1533</td>
<td>41.7</td>
<td>19.1</td>
</tr>
</tbody>
</table>
For triage, LuViva is intended for use after abnormal cytology and/or positive HPV findings and/or other risk factors to triage women aged 16+ for additional evaluation prior to colposcopy and biopsy.
Study Clinical Sites

University of Texas Southwest – Dallas, Texas
 Principal Investigator – Claudia Werner, MD
Emory University School of Medicine – Atlanta, Georgia
 Principal Investigator – Lisa C. Flowers, MD
University of Miami – Miami, Florida
 Principal Investigator – Leo B. Twiggs, MD / Co PI – Nahida Chakhtoura, MD
Saint Francis Hospital Univ. of CT – Hartford, Connecticut
 Principal Investigator – Manocher Lashgari, MD
University of Arkansas – Little Rock, Arkansas
 Principal Investigator – Alexander Burnett, MD
Medical College of Georgia – Augusta, Georgia
 Principal Investigator – Daron G. Ferris, MD
Orange Coast/SaddleBack Women’s Medical Group
 Principal Investigators – Marc Winter, MD / Daniel Sternfeld, MD